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Dehydroamino acids are found in many cyclic peptide natural leader peptide
productst and they enhance proteolytic stability and biological '1 211 25 . 51
activity of linear peptided.Furthermore, dehydroamino acids can [ MKEQNSFNLLQEVTESELDLILGA —KGGSGVIHTISHECNMNSWRFVFTCCS
be used as precursors to peptide conjudaad unnatural amino LctA
acids? ¢ Incorporation of dehydroamino acids into unprotected | Letm, ATP
peptides using synthetic methods is currently challengiGme leader peptide —KGGSGVIHDhbIDhaHECNMNDhaWQFVFDhbCCS

promising route to these structures is through the biosynthetic Figure 1. Dehydration of LctA catalyzed by lacticin 481 synthetase (LctM).
machinery for lantibiotics. These compounds are ribosomally The truncated substrate used in this work is boxed.

synthesized and post-translationally modified antimicrobial pep- Scheme 1
tides® The first step in the modification process involves the

; : : o oH O  OtBu
dehydration of Ser and Thr residues to dehydroalanines and : H
Z-dehydrobutyrines, respectively. This reaction was recently re- 0/\:')1\” ﬂ 0/\5/\R pp—— HO)K;/\R
constituted in vitro for lacticin 481 synthetase LctM (Figure 1) and ﬁ/ NBoc )T NBoc 6 steps NHFmoc
the haloduracin synthetases Hal¥lin this study, we report on
the substrate selectivity of the enzymatic dehydration reaction by o OH o OH o OH

O o] O
LctM using various Thr analogues, showing that several dehy- HOJ\/‘-\/ HOJ\/:\/\ HOJ\/:\'Pr
T T -

droamino acids are readily accessible using this approach.

i ey NH, NH, NH,
Several studies have recently shown that the lantibiotic dehy- ) ) 3

dratases can process non-lantibiotic substrates as long as they are
attached at the C-terminus of a leader peptide (Figut& 3jDuring o OH o OH o OH
lantibiotic biosynthesis, this leader peptide is removed by a protease iz H H
after completion of the post-translational modifications. The HO NH HO NH X HO ﬁH N M
specificity of the dehydratases with respect to the structure of the 2 2 2 °
hydroxyl-bearing amino acid has not been investigated to date. To 4 5 &
evaluate this question, we prepared a series of potential substrate O OH O OH O OH
analogues (Scheme 1). These structures were all prepared suitably HO)J\/:'\/\ HO™ ™ AP HO)I\.)
protected for Fmoc-based solid-phase peptide synthesis (SPPS). NH, NH, X
The key step in the synthesis of the Thr analogiie8 involved NH,
the addition of organozinc or organocopper reagents to D-Garner 7 8 9

aldehydei* which took place with excellent diastereoselectivities
and without affecting the existing stereocenter as shown by chiral was first incorporated at position 42 of the truncated LctA peptide
SFC analysié? (LctA1—43—-S42T). Clean conversion to a product with a mass
Using SPPS, the protected amino acids were then incorporateddecreased by 54 Da (3,8) with respect to the substrate was
into the synthetic heptapeptides CysAsnMetAsnXxxTrpAla corre- observed, resulting from dehydration of Thr33, Ser35, and Thr42
sponding to residues 384 of the LctA substrate for LctM. The  (see Figure S1 in the Supporting Information). Substitution of Ser42
amino acidsl—9 replaced a Ser in these peptides that is usually with (R)-3-ethylserine also led to clean 3-fold dehydration (Figure
present at position 42 of LctA (Figure 1). The synthetic peptides 2A), demonstrating that LctM can tolerate an ethyl group and
were then ligated to a truncated LctA peptide corresponding to thereby install dehydronorvalines into peptides. However, both
residues +37 containing a thioester at its C-terminus. This peptide propyl and isopropyl groups proved too large for the enzyme as
was obtained by expression iBscherichia colifused at the the LctA analogues withR)-3-propylserine ) and R)-3-isopro-
C-terminus to an inteirchitin binding domain, subsequent puri-  pylserine B) at position 42 resulted in just two dehydrations after
fication using affinity chromatography, and elution with the sodium incubation with LctM (Figures S2 and S3). Treatment of the 2-fold
salt of mercaptoethanesulfonic acid (MES)!8 The resulting MES dehydrated product with cyanogen bromide, which cleaves the
thioester was then ligated with the synthetic heptapeptides usingpeptide after Metl and Met40, and subsequent analysis by MALDI-
native chemical ligatioA?2° MS conclusively showed that analogu&and3 at position 42 were
After HPLC purification, the LctA analogues that correspond to not dehydrated (Figures S6 and S7). On the other hand, a three-
LctA1—43 were incubated with LctM in the presence of ATP and carbon substituent that is less sterically demanding, such as the
Mg?*t. Previous studies have shown that the enzyme uses ATP forpropynyl group in6, was accepted by the enzyme (Figure 2B) as
phosphorylation of the hydroxyl groups of Ser and Thr that undergo were the vinyl and ethynyl analoguésand5 (e.qg., Figure 2C for
elimination!® The assays with the LctA analogues were then ethynyl). Upon dehydration, these substrates result in interesting
analyzed by MALDI-TOF mass spectrometry. As a control, Thr a,f—y,0-unsaturated amino acids with extended conjugation.
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